高温气象网

您现在的位置是: 首页 > 生活指数

文章内容

电子气象仪用处_电子气象仪使用方法

tamoadmin 2024-09-13
1.勘查技术方法的历史、现状及发展趋势2.能喷火的巨型机器人的有关资料样子和用处3.天气预报是怎么形成的4.气相色谱仪的使用步骤5.神舟号飞船有什么用啊?树莓派

1.勘查技术方法的历史、现状及发展趋势

2.能喷火的巨型机器人的有关资料样子和用处

3.天气预报是怎么形成的

4.气相色谱仪的使用步骤

5.神舟号飞船有什么用啊?

电子气象仪用处_电子气象仪使用方法

树莓派(Raspberry Pi )是为学习计算机编程教育而设计,只有大小的微型电脑,其系统基于Linux。

它具备所有PC的基本功能只需接通电视机和键盘,就能执行如电子表格、文字处理、玩游戏、播放等诸多功能。 Raspberry Pi B款只提供电脑板,无内存、电源、键盘、机箱或连线。

普通的计算机主板都是依靠硬盘来存储数据,但是Raspberry Pi 来说使用SD 卡作为“硬盘”,你也可以外接USB 硬盘。利用Raspberry Pi 可以编辑Office 文档、浏览网页、玩游戏—即使玩需要强大的图形加速器支持的游戏也没有问题,如《雷神之锤》(Quake )。

Raspberry Pi 的低价意味着其用途更加广泛,将其打造成卓越的多媒体中心也是一个不错的选择。利用Raspberry Pi 可以播放,甚至可以通过电视机的USB 接口供电。

扩展资料

树莓派A型与B型的区别

树莓派A型内置256MB内存,带一个USB端口,不带有线网接口。

树莓派B型内置512MB内存,带两个USB端口,带100M有线网接口。

注:在2012年10月15日前发售的B型机器内存为256MB。

勘查技术方法的历史、现状及发展趋势

人造卫星的优点在于能同时处理大量的资料及能传送到世界任何角落,使用三颗卫星即能涵盖全球各地,依使用目的,人造卫星大致可分为下列7类:

1、科学卫星:送入太空轨道,进行大气物理、天文物理、地球物理等实验或测试的卫星如中华卫星一号、哈伯等。

2、通信卫星:作为电讯中继站的卫星,如:亚卫一号。

3、军事卫星:作为军事照相、侦察之用的卫星。

4、气象卫星:摄取云层图和有关气象资料的卫星。

6、卫星:摄取地表或深层组成之图像,做为地球探勘之用的卫星。

7、星际卫星:可航行至其它行星进行探测照相之卫星一般称之为行星探测器,如先锋号、火星号、探路者号等。

扩展资料

一、人造卫星按运行轨道分:

为低轨道卫星、中轨道卫星,高轨道卫星、地球同步轨道卫星、地球静止轨道卫星、太阳同步轨道卫星、大椭圆轨道卫星和极轨道卫星;按用途区分为科学卫星、应用卫星和技术试验卫星。

人造卫星的运行轨道(除近地轨道外)通常有三种:地球同步轨道,太阳同步轨道,极轨轨道。

1、地球同步轨道是运行周期与地球自转周期相同的顺行轨道。但其中有一种十分特殊的轨道,叫地球静止轨道这种轨道的倾角为零,在地球赤道上空35786千米。地面上的人看来,在这条轨道上运行的卫星是静止不动的一般通信卫星,广播卫星,气象卫星选用这种轨道比较有利。地球同步轨道有无数条,而地球静止轨道只有一条。

2、太阳同步轨道是绕着地球自转轴,方向与地球公转方向相同,旋转角速度等于地球公转的平均角速度(360度/年)的轨道,它距地球的高度不超过6000千米。在这条轨道上运行的卫星以相同的方向经过同一纬度的当地时间是相同的。气象卫星、地球卫星一般用这种轨道。

3、极地轨道是倾角为90度的轨道,在这条轨道上运行的卫星每圈都要经过地球两极上空,可以俯视整个地球表面。气象卫星、地球卫星、侦察卫星常用此轨道。

二、通用系统有结构,温度控制,姿态控制,能源,跟踪,遥测,遥控,通信,轨道控制,天线等等系统,返回式卫星还有回收系统,此外还有根据任务需要而设的各种专用系统。人造卫星能够成功执行预定任务,单凭卫星本身是不行的,而需要完整的卫星工程系统,一般由以下系统组成:

1、发射场系统

2、运载火箭系统

3、卫星系统

4、测控系统

5、卫星应用系统

6、回收区系统(限于返回式卫星)

百度百科-人造卫星

能喷火的巨型机器人的有关资料样子和用处

0.3.1 古代的勘查技术

人类的生存与发展从一开始就和岩石、土壤、矿产、盐和水等自然的开发和利用息息相关。人类历史上的旧石器时代、新石器(包括粘土烧制的陶器的使用)时代、铜器时代、铁器时代的划分就是按照人类对矿产品的开发利用水平(生产力发展的标志)确定的。在各种矿产的开发利用过程中,勘查技术与工程也就逐渐形成了。

我国是一个有五千多年悠久历史和文化的文明古国,勘查技术的发展具有很长的历史。公元前180年成书的《管子·地数篇》明确记载着:“山有赭者,其下有铁;上有铅者,其下有银;上有丹砂者,其下有金;上有慈石者,其下有铜金,此山之见荣者也。”它不仅揭示了矿床学上金、汞共生,铁、铜、金共生,铅、银共生的事实与规律,而且还为现代地球化学勘查用指示矿物(指示元素)找矿提供了启蒙思想。我国西晋时期张华所著《博物志》中,有“积艾草三年后,烧,津液下流成铅锡,已有试验”的记述,实际上就是现代生物地球化学找矿的原始思路与方法(朱训《地质科学与地矿事业》,19)。

至于找地下水和取盐的钻掘技术则发展更早,成就更加辉煌。早在我国夏代就有“伯益作井”之说。到了北宋,为从地下卤制盐,四川遂宁卓筒井的打井深度已达3000 m,发展出了一整套钻井工程、工艺及相关技术,并在自贡、遂宁,五通桥等地广为使用,世代相袭,至今仍保留着几十口这样的井。该项盐钻井技术,被誉为“现代石油钻井之父”,“中国古代第五明”(《中国矿业》·四川卷,1998)。

我国的战国时期已能利用天然磁铁磨制指南针,并产生了我国古代的四明之一的罗盘。这是人类对岩石磁性和地球磁场的早期认识和具体应用。后来英国伊丽莎白女王一世的医生(威廉·吉尔伯特)通过对罗盘指向北方的进一步研究,得出了地球本身是一个巨大而又非规则的磁体的结论。这一结论在某种程度上又启发了牛顿思考树上的苹果为什么要落地?他认为,一定是物体与物体之间有引力,最后产生了他著名的重力理论(A.E.Mussett等,2000)。地球磁场和重力场理论的建立,奠定了现代地球物理重、磁勘探的基础。我国东汉时期著名学者张衡在公元132年发明了地震仪——候风地动仪,这是我国学者对地震、地震灾害的认识和地震观测技术发展的杰出贡献。图0-4是候风地动仪的外形和利用惯性原理使其中的倒立摆向着地震波传播方向摆动引发该方向龙嘴的小球吐出的原理图。

0.3.2 近代勘查技术

近代勘查技术是从19世纪末到20世纪初开始发展起来的。1888年,匈牙利学者 Baron Roland Von E?tv?s发明了扭秤(torsion balance);1900年在欧洲开始用扭秤进行地质构造图的绘制;1922年在美国得克萨斯州发现了盐丘构造的重力异常,并于1926 年首次用地球物理扭秤法发现了盐丘构造中的石油。

图0-4 候风地动仪及原理图

地震勘探方法是从地震波的理论研究、天然地震研究和声波等研究中发展起来的。1905年,L.P.Garret建议用地震折射波法寻找盐丘构造。1912年发生了英国的泰坦尼克号轮船在大西洋与水下冰山相撞沉没的惨痛之后,R.A.Fessenden立即着手水下冰山的探测研究,于是产生了水下声波探测法,并获得了美国专利。该专利于1917年发布,是世界上用地震波进行勘探的首项专利。更有实际应用价值的地震勘探方法是德国学者Mintrop提出的,他于1914年发明了机械地震仪,以该仪器为基础,他在1919年申报了德国专利,名为“确定岩石构造的方法”。该专利于1926年发布,阐述了机械波可用人工爆炸产生震源,用地震仪器接收,通过分析各种地震波在地下传播的深度,走时和距离能够确定地层的厚度、密度以及地层构造的走向和倾角等等(R.E.谢里夫,1995),这几乎涉及到了现代地震勘探所有的重要内容。

1879年,R.萨伦教授出版了他的著作《用磁法找铁矿》,随后在瑞典成功制造了萨伦-堤伯格磁力仪和汤姆森-萨伦磁力仪,并形成了确定地下磁性岩脉埋藏深度、走向和倾角的实用方法(W.M.Telford等,1990)。

电法勘探亦有较长的发展历史,1815年,R.福克斯发现某些矿物具有自极化特性,并预言可利用这一效应寻找某些矿产。过了约100年相应的仪器才制造出来,1913年,C.施伦伯格用这种仪器发现了硫化物矿床,此后他还发明了有实际勘探价值的电阻率法和等位线法(M.B.多布林,16)。

在研究地壳物质的物理性质和结构的同时,人们对其化学成分亦十分重视,并对元素和元素的丰度进行了长期的研究。1889年,美国学者F.W.克拉克发表了《化学元素相对丰度》的著名论文,开创了现代地球化学研究的先河,目前人们通常把地壳中元素的丰度称为克拉克值。

0.3.3 现代勘查技术及发展趋势

现代勘探技术方法的形成与发展,在西方是从第二次世界大战后,在我国则是从1949年中华人民共和国成立之后开始的。

按勘查技术的进步和应用领域的变化可将现代勘查技术的发展以上世纪80年代为界分为两个时期:第一个时期在20世纪40~80年代是勘查技术快速发展和成熟的时期,应用领域以矿产勘查为中心。第二个时期从20世纪80年代到现在是应用领域不断变化和扩大的时期。

在以找矿为中心的第一个时期,勘查技术主要分为油气勘查技术和固体矿产勘查技术两种。

油气勘查技术的典型代表是地震勘探和井下地球物理,通过它们的发展可了解整个油气勘查技术的发展进程和概貌,地震勘探的发展经历了如下三个阶段。

第一阶段(上世纪40~50年代),地震仪器用电子管元件,以光学照相的方式获取以专用相纸为介质的地震记录,用人工进行资料的整理、处理和解释,很多的大油田,包括我国大庆油田的发现,最初都是用这种仪器和技术方法发现的。这类设备的主要缺点是笨重,机动性差,资料不能重新处理,记录动态范围小(20 dB,只能识别10倍大小的振幅差别),资料处理效率低。

第二阶段(上世纪50~70年代),地震仪器用晶体管器件,以磁头录制的方式获取用磁带作介质的地震记录。这种记录可以反复回放处理,在处理中可使用模拟电子计算机处理,也可通过模数(A/D)转换后用数字计算机处理,记录的动态范围提高了1个数量级(40 dB,可识别相差100倍大小的信号)。磁带仪器的出现,使至今仍在有效使用的反射地震多次覆盖水平叠加技术得以应用与发展,大大提高了地震勘探的能力与效果。

第三阶段(上世纪70~80年代),以数字磁带记录、数字电子计算机处理,超多道(千道以上)、高覆盖观测,大动态范围(100 dB以上,可识别强弱相差10万倍以上的信号)为特点。这推动了数字处理技术的迅速发展。世界各先进国家用于地震资料处理的电子计算机的运算速度之快,性能之优越,存储量之大与军事、气象部门是并驾齐驱的,或者说有过之而无不及。

除地震勘探之外,为油气勘查服务的其他技术方法也有快速的发展,重力测量已不再使用笨重的扭秤,代之而来的是精度高、轻便的重力仪。它能在水下、井下和空中(航空重力)测量。地面重力测量精度可达微伽级,这样的高精度测量在其他方面亦很有用处,例如20世纪70年代初美国阿波罗-17登月飞船到达月球时所使用的月球-4号重力仪与勘查工作中所用的高精度重力仪出自同一公司的同一设计者(LaCoste),其精度就是微伽级的。实验目的是想把月球作为参照质量,在地球和月球上同时进行重力测量以证实爱因斯坦关于存在重力波的预言。可惜因为一些小的设计错误,这项实验未能成功,重力仪的精度和高分辨率是十分肯定的。

这一时期的油气钻井技术工艺也发展很快,出现了深度7000 m以上的超深井、斜井、水平井和同一井位多方向钻进的丛式井,以及把钻头作为震源的随钻地震技术等等。

在固体矿产勘查和其他方面的应用中,勘查仪器设备和方法向着轻便化、数字化、高精度和高效率的方向发展。20世纪50~60年代先后出现了航空核子磁力仪和更高精度的光泵型铯、铷蒸气磁力仪。航空磁测速度快、效率高,便于大面积测量,容易从事地面难以进入地区:沙漠、高山、极地和海洋等的勘查工作,对铁矿的勘查和含油气盆地基底的描绘发挥了重要作用。这一时期与航空磁测相媲美的还出现了遥感、航空摄影、卫星定位、航空电磁法、航空γ、航空重力等空中勘查方法和地面与井下的各种放射性、地球化学、电法、探地雷达等新方法、新技术和新仪器,整体上提高了矿产勘查技术水平,全面增强了勘查功能,扩大了找矿效果。

从20世纪80年代起到现在是现代勘查技术工程发展的第二个时期,这个时期的方法和技术,在一定程度上也代表着勘查技术的发展趋势。其显著特点是在勘查技术继续发展的同时,其活动领域从找矿为中心扩大到既继续为、能源的勘查服务,又为生态环境建设、城镇建设和大型工程建设服务。活动领域的转变是由以下因素决定的。

首先,人们逐步意识到环境保护的重要性,人类在开发利用大自然,享受用高科技创造的现代物质文明的同时,给大自然和生态环境带来了严重的破坏。环境问题引起世界各国重视,环境地球物理和环境地球化学等新的勘查技术工程的学科分支逐步调整自己的位置与方向。

第二,大型工程的建设速度和规模不断扩大,这包括公路、铁路、地铁、机场、矿山、管道、水坝、大厦、核电站、码头的建设等等,这些设施的质量和安全及其相应的环境保护,成为人们空前关注的问题。因此,工程地球物理这个较老的学科也受到了特别的重视,环境工程地球化学新学科在20世纪90年代也开始出现。

环境工程地球化学是利用地球化学作用改善环境的科学技术,主要任务有防止污染,改善岩石和土壤的物理、化学性质,改善水的质量。

第三,城镇化进程加快,城市人口不断增加,为城镇建设服务的城市地球物理、地理信息系统(GIS)、遥感(RS)和寻找地下水的水勘查技术的市场需求迅速扩大。

由应用领域不同而出现的上述新的勘查技术方法仍由图0-2和图0-3的中部所示的那些方法组合而成,各种方法的适用范围仍应参考表0-1。该表主要是根据技术方法的性能确定的,实际应用中还应注意利用性能价格比来选择适当的方法,比值高的应当优先选择。各种方法在做同一工作的经济成本是有差别的。

20世纪80年代以来,随着信息技术的进步和社会需求的变化,勘查技术有以下的主要发展趋势。

充分利用和发挥信息、网络和计算机的作用,使勘查技术在数据的集、传输、存储、处理、解释和显示等方面更加现代化。巨型并行计算机、海量存储器、网络数据的高速传输与通讯,各种解释工作站和三维可视化显示将普遍使用。

勘查技术工程将按照研究对象的复杂性,继续提高自身解决复杂问题的能力。地球是一个复杂的巨大系统,目前只能用理想的、简单的数学物理模型去描述它,以这种理想化的模型为基础结合勘查技术工作者在地表或上空观测的有限数据去反演或解释地球内部是不精确的。它只能部分地解决某些简单的问题,如何将一个复杂的、真实的地球内部展示在人们的面前,将是一项困难和长期的任务。

增强勘查技术的功能,调整投入结构。前面已经指出了勘查技术某些新的应用领域,如何在这些领域中取得实质性进展则是人们应着重思考的另一个问题。水的勘查就是一个紧迫的问题。世界各国对地下水勘查的投入(1991年)只占勘查总投入的0.1%(R.E.Sheriff,1995)。改变类似这样不合理的经费投入结构,可促进相应方向技术的发展。

天气预报是怎么形成的

实用上,机器人(Robot)是自动执行工作的机器装置。机器人可接受人类指挥,也可以执行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动。机器人执行的是取代或是协助人类工作的工作,例如制造业、建筑业,或是危险的工作。

机器人可以是高级整合控制论、机械电子、计算机、材料和仿生学的产物。目前在工业、医学甚至军事等领域中均有重要用途。

欧美国家认为:机器人应该是由计算机控制的通过编排程序具有可以变更的多功能的自动机械,但是日本不同意这种说法。日本人认为“机器人就是任何高级的自动机械”,这就把那种尚需一个人操纵的机械手包括进去了。因此,很多日本人概念中的机器人,并不是欧美人所定义的。

现在,国际上对机器人的概念已经逐渐趋近一致。一般说来,人们都可以接受这种说法,即机器人是靠自身动力和控制能力来实现各种功能的一种机器。联合国标准化组织纳了美国机器人协会给机器人下的定义:“一种可编程和多功能的,用来搬运材料、零件、工具的操作机;或是为了执行不同的任务而具有可改变和可编程动作的专门系统。”

机器人能力的评价标准包括:智能,指感觉和感知,包括记忆、运算、比较、鉴别、判断、决策、学习和逻辑推理等;机能,指变通性、通用性或空间占有性等;物理能,指力、速度、连续运行能力、可靠性、联用性、寿命等。因此,可以说机器人是具有生物功能的空间三维坐标机器。

机器人发展简史(引自《环球科学》2007年第二期)

1920年 捷克斯洛伐克作家卡雷尔·恰佩克在他的科幻《罗萨姆的机器人万能公司》中,根据Robota(捷克文,原意为“劳役、苦工”)和Robotnik(波兰文,原意为“工人”),创造出“机器人”这个词。

1939年 美国纽约世博会上展出了西屋电气公司制造的家用机器人Elektro。它由电缆控制,可以行走,会说77个字,甚至可以抽烟,不过离真正干家务活还差得远。但它让人们对家用机器人的憧憬变得更加具体。

1942年 美国科幻巨匠阿西莫夫提出“机器人三定律”。虽然这只是科幻里的创造,但后来成为学术界默认的研发原则。

1948年 诺伯特·维纳出版《控制论》,阐述了机器中的通信和控制机能与人的神经、感觉机能的共同规律,率先提出以计算机为核心的自动化工厂。

1954年 美国人乔治·德沃尔制造出世界上第一台可编程的机器人,并注册了专利。这种机械手能按照不同的程序从事不同的工作,因此具有通用性和灵活性。

1956年 在达特茅斯会议上,马文·明斯基提出了他对智能机器的看法:智能机器“能够创建周围环境的抽象模型,如果遇到问题,能够从抽象模型中寻找解决方法”。这个定义影响到以后30年智能机器人的研究方向。

1959年 德沃尔与美国发明家约瑟夫·英格伯格联手制造出第一台工业机器人。随后,成立了世界上第一家机器人制造工厂——Unimation公司。由于英格伯格对工业机器人的研发和宣传,他也被称为“工业机器人之父”。

1962年 美国AMF公司生产出“VERSTRAN”(意思是万能搬运),与Unimation公司生产的Unimate一样成为真正商业化的工业机器人,并出口到世界各国,掀起了全世界对机器人和机器人研究的热潮。

1962年-1963年传感器的应用提高了机器人的可操作性。人们试着在机器人上安装各种各样的传感器,包括1961年恩斯特用的触觉传感器,托莫维奇和博尼1962年在世界上最早的“灵巧手”上用到了压力传感器,而麦卡锡1963年则开始在机器人中加入视觉传感系统,并在1965年,帮助MIT推出了世界上第一个带有视觉传感器,能识别并定位积木的机器人系统。

1965年约翰·霍普金斯大学应用物理实验室研制出Beast机器人。Beast已经能通过声纳系统、光电管等装置,根据环境校正自己的位置。20世纪60年代中期开始,美国麻省理工学院、斯坦福大学、英国爱丁堡大学等陆续成立了机器人实验室。美国兴起研究第二代带传感器、“有感觉”的机器人,并向人工智能进发。

1968年 美国斯坦福研究所公布他们研发成功的机器人Shakey。它带有视觉传感器,能根据人的指令发现并抓取积木,不过控制它的计算机有一个房间那么大。Shakey可以算是世界第一台智能机器人,拉开了第三代机器人研发的序幕。

1969年 日本早稻田大学加藤一郎实验室研发出第一台以双脚走路的机器人。加藤一郎长期致力于研究仿人机器人,被誉为“仿人机器人之父”。日本专家一向以研发仿人机器人和机器人的技术见长,后来更进一步,催生出本田公司的ASIMO和索尼公司的QRIO。

13年 世界上第一次机器人和小型计算机携手合作,就诞生了美国Cincinnati Milacron公司的机器人T3。

18年 美国Unimation公司推出通用工业机器人PUMA,这标志着工业机器人技术已经完全成熟。PUMA至今仍然工作在工厂第一线。

年 英格伯格再推机器人Helpmate,这种机器人能在医院里为病人送饭、送药、送邮件。同年,他还预言:“我要让机器人擦地板,做饭,出去帮我洗车,检查安全”。

1998年 丹麦乐高公司推出机器人(Mind-storms)套件,让机器人制造变得跟搭积木一样,相对简单又能任意拼装,使机器人开始走入个人世界。

1999年 日本索尼公司推出犬型机器人爱宝(AIBO),当即销售一空,从此机器人成为目前机器人迈进普通家庭的途径之一。

2002年 丹麦iRobot公司推出了吸尘器机器人Roomba,它能避开障碍,自动设计行进路线,还能在电量不足时,自动驶向充电座。Roomba是目前世界上销量最大、最商业化的家用机器人。

2006年 6月,微软公司推出Microsoft Robotics Studio,机器人模块化、平台统一化的趋势越来越明显,比尔·盖茨预言,家用机器人很快将席卷全球。

机器人的定义

在科技界,科学家会给每一个科技术语一个明确的定义,但机器人问世已有几十年,机器人的定义仍然仁者见仁,智者见智,没有一个统一的意见。原因之一是机器人还在发展,新的机型,新的功能不断涌现。根本原因主要是因为机器人涉及到了人的概念,成为一个难以回答的哲学问题。就像机器人一词最早诞生于科幻之中一样,人们对机器人充满了幻想。也许正是由于机器人定义的模糊,才给了人们充分的想象和创造空间。

操作型机器人:能自动控制,可重复编程,多功能,有几个自由度,可固定或运动,用于相关自动化系统中。

程控型机器人:按预先要求的顺序及条件,依次控制机器人的机械动作。

示教再现型机器人:通过引导或其它方式,先教会机器人动作,输入工作程序,机器人则自动重复进行作业。

数控型机器人:不必使机器人动作,通过数值、语言等对机器人进行示教,机器人根据示教后的信息进行作业。

感觉控制型机器人:利用传感器获取的信息控制机器人的动作。

适应控制型机器人:机器人能适应环境的变化,控制其自身的行动。

学习控制型机器人:机器人能“体会”工作的经验,具有一定的学习功能,并将所“学”的经验用于工作中。

智能机器人:以人工智能决定其行动的机器人。

我国的机器人专家从应用环境出发,将机器人分为两大类,即工业机器人和特种机器人。所谓工业机器人就是面向工业领域的多关节机械手或多自由度机器人。而特种机器人则是除工业机器人之外的、用于非制造业并服务于人类的各种先进机器人,包括:服务机器人、水下机器人、机器人、器人、农业机器人、机器人化机器等。在特种机器人中,有些分支发展很快,有独立成体系的趋势,如服务机器人、水下机器人、器人、微操作机器人等。目前,国际上的机器人学者,从应用环境出发将机器人也分为两类:制造环境下的工业机器人和非制造环境下的服务与仿人型机器人,这和我国的分类是一致的。

空中机器人又叫无人机,近年来在器人家族中,无人机是科研活动最活跃、技术进步最大、研究及购经费投入最多、实战经验最丰富的领域。80多年来,世界无人机的发展基本上是以美国为主线向前推进的,无论从技术水平还是无人机的种类和数量来看,美国均居世界之首位。

“别动队”无人机

纵观无人机发展的历史,可以说现代战争是推动无人机发展的动力。而无人机对现代战争的影响也越来越大。一次和二次世界大战期间,尽管出现并使用了无人机,但由于技术水平低下,无人机并未发挥重大作用。朝鲜战争中美国使用了无人侦察机和攻击机,不过数量有限。在随后的越南战争、中东战争中无人机已成为必不可少的武器系统。而在海湾战争、波黑战争及科索沃战争中无人机更成了主要的侦察机种。

法国“红隼”无人机

越南战争期间美国空军损失惨重,被击落飞机2500架,飞行员死亡5000多名,美国国内舆论哗然。为此美国空军较多地使用了无人机。如“水牛猎手”无人机在北越上空执行任务2500多次,超低空拍摄照片,损伤率仅4%。AQM-34Q型147火蜂无人机飞行500多次,进行电子窃听、电台干扰、抛撒金属箔条及为有人飞机开辟通道等。

高空无人侦察机

在1982年的贝卡谷地之战中,以色列军队通过空中侦察发现。叙利亚在贝卡谷地集中了大量部队。6月9日,以军出动美制E-2C“鹰眼”预警飞机对叙军进行监视,同时每天出动“侦察兵”及“猛犬”等无人机70多架次,对叙军的防空阵地、机场进行反复侦察,并将拍摄的图像传送给预警飞机和地面指挥部。这样,以军准确地查明了叙军雷达的位置,接着发射“狼”式反雷达导弹,摧毁了叙军不少的雷达、导弹及自行高炮,迫使叙军的雷达不敢开机,为以军有人飞机攻击目标创造了条件。

鬼怪式无人机

1991年爆发了海湾战争,美军首先面对的一个问题就是要在茫茫的沙海中找到伊拉克隐藏的飞毛腿导弹发射器。如果用有人侦察机,就必须在大漠上空往返飞行,长时间暴露于伊拉克军队的高射火力之下,极其危险。为此,无人机成了美军空中侦察的主力。在整个海湾战争期间,“先锋”无人机是美军使用最多的无人机种,美军在海湾地区共部署了6个先锋无人机连,总共出动了522架次,飞行时间达1640小时。那时,不论白天还是黑夜,每天总有一架先锋无人机在海湾上空飞行。

为了摧毁伊军在沿海修筑的坚固的防御工事,2月4日密苏里号战舰乘夜驶至近海区,先锋号无人机由它的甲板上起飞,用红外侦察仪拍摄了地面目标的图像并传送给指挥中心。几分钟后,战舰上的406毫米的舰炮开始轰击目标,同时无人机不断地为舰炮进行校射。之后威斯康星号战舰接替了密苏里号,如此连续炮轰了三天,使伊军的炮兵阵地、雷达网、指挥通信枢纽遭到彻底破坏。在海湾战争期间,仅从两艘战列舰上起飞的先锋无人机就有151架次,飞行了530多个小时,完成了目标搜索、战场警戒、海上拦截及海军炮火支援等任务。

发射Brevel无人机

在海湾战争中,先锋无人机成了美国陆军部队的开路先锋。它为陆军第7军进行空中侦察,拍摄了大量的伊军坦克、指挥中心、及导弹发射阵地的图像,并传送给直升机部队,接着美军就出动“阿帕奇”攻击型直升机对目标进行攻击,必要时还可呼唤炮兵部队进行火力支援。先锋机的生存能力很强,在319架次的飞行中,仅有一架被击中,有4~5架由于电磁干扰而失事。

除美军外,英、法、加拿大也都出动了无人机。如法国的“幼鹿”师装备有一个“马尔特”无人机排。当法军深入伊境内作战时,首先派无人机侦察敌情,根据侦察到的情况,法军躲过了伊军的坦克及炮兵阵地。

1995年波黑战争中,因部队急需,“捕食者”无人机很快就被运往前线。在北约空袭塞族部队的补给线、库、指挥中心时,“捕食者”发挥了重要的作用。它首先进行侦察,发现目标后引导有人飞机进行攻击,然后再进行战果评估。它还为联合国维和部队提供波黑境内主要公路上军车移动的情况,以判断各方是否遵守了和平协议。美军因而把“捕食者”称作“战场上的低空卫星”。其实卫星只能提供战场上的瞬间图像,而无人机可以在战场上空长时间盘旋逗留,因而能够提供战场的连续实时图像,无人机还比使用卫星便宜得多。

1999年3月24日,以美国为首的北约打着“维护”的幌子对南联盟开始了狂轰滥炸,爆发了震惊世界的“科索沃战争”。在持续78天的轰炸过程中,北约共出动飞机3.2万架次,投入舰艇40多艘,扔下1.3万吨,造成了二战以来欧洲空前的浩劫。

南联盟多山、多森林的地形以及多阴雨天的气候条件,大大影响了北约侦察卫星及高空侦察机的侦察效果,塞军的防空火力又很猛,有人侦察机不敢低飞,致使北约空军无法识别及攻击云层下面的目标。为了减少人员的伤亡,北约大量使用了无人机。科索沃战争是世界局部战争中使用无人机数量最多、无人机发挥作用最大的战争。无人机尽管飞得较慢,飞行高度较低,但它体积小,雷达及红外特征较小,隐蔽性好,不易被击中,适于进行中低空侦察,可以看清卫星及有人侦察机看不清的目标。

在科索沃战争中,美国、德国、法国及英国总共出动了6种不同类型的无人机约200多架,它们有:美国空军的“捕食者”(Predator)、陆军的“猎人”(Hunter)及海军的“先锋”(Pioneer);德国的CL-289;法国的“红隼”(Crecerelles)、 “猎人”,以及英国的“不死鸟”(Phoenix)等无人机。

无人机在科索沃战争中主要完成了以下一些任务:中低空侦察及战场监视,电子干扰,战果评估,目标定位,气象资料搜集,散发传单以及营救飞行员等。

科索沃战争不仅大大提高了无人机在战争中的地位,而且引起了各国对无人机的重视。美国参议院武装部队委员会要求,10年内军方应准备足够数量的无人系统,使低空攻击机中有三分之一是无人机;15年内,地面战车中应有三分之一是无人系统。这并不是要用无人系统代替飞行员及有人飞机,而是用它们补充有人飞机的能力,以便在高风险的任务中尽量少用飞行员。无人机的发展必将推动现代战争理论和无人战争体系的发展。

机器警察

所谓地面器人是指在地面上使用的机器人系统,它们不仅在和平时期可以帮助民警排除、完成要地保安任务,在战时还可以代替士兵执行扫雷、侦察和攻击等各种任务,今天美、英、德、法、日等国均已研制出多种型号的地面器人。

英国的“手推车”机器人

在西方国家中,恐怖活动始终是个令当局头疼的问题。英国由于,饱受爆炸物的威胁,因而早在60年代就研制成功排爆机器人。英国研制的履带式“手推车”及“超级手推车”排爆机器人,已向50多个国家的军警机构售出了800台以上。最近英国又将手推车机器人加以优化,研制出土拨鼠及野牛两种遥控电动排爆机器人,英国工程兵在波黑及科索沃都用它们探测及处理爆炸物。土拨鼠重35公斤,在桅杆上装有两台摄像机。野牛重210公斤,可携带100公斤负载。两者均用无线电控制系统,遥控距离约1公里。

“土拨鼠”和“野牛”排爆机器人

除了恐怖分子安放的外,在世界上许多战乱国家中,到处都散布着未爆炸的各种。例如,海湾战争后的科威特,就像一座随时可能爆炸的库。在伊科边境一万多平方公里的地区内,有16个国家制造的25万颗地雷,85万发炮弹,以及多国部队投下的布雷弹及子母弹的2500万颗,其中至少有20%没有爆炸。而且直到现在,在许多国家中甚至还残留有一次大战和二次大战中未爆炸的和地雷。因此,爆炸物处理机器人的需求量是很大的。

排除爆炸物机器人有轮式的及履带式的,它们一般体积不大,转向灵活,便于在狭窄的地方工作,操作人员可以在几百米到几公里以外通过无线电或光缆控制其活动。机器人车上一般装有多台彩色CCD摄像机用来对爆炸物进行观察;一个多自由度机械手,用它的手爪或夹钳可将爆炸物的引信或拧下来,并把爆炸物运走;车上还装有,利用激光指示器瞄准后,它可把爆炸物的定时装置及引爆装置击毁;有的机器人还装有高压水枪,可以切割爆炸物。

德国的排爆机器人

在法国,空军、陆军和警察署都购买了Cybernetics公司研制的TRS200中型排爆机器人。DM公司研制的RM35机器人也被巴黎机场管理局选中。德国驻波黑的维和部队则装备了Telerob公司的MV4系列机器人。我国沈阳自动化所研制的PXJ-2机器人也加入了公安部队的行列。

美国Remotec公司的Andros系列机器人受到各国军警部门的欢迎,白宫及国会大厦的警察局都购买了这种机器人。在南非总统选举之前,警方购买了四台AndrosVIA型机器人,它们在选举过程中总共执行了100多次任务。 Andros机器人可用于小型随机爆炸物的处理,它是美国空军客机及客车上使用的唯一的机器人。海湾战争后,美国海军也曾用这种机器人在沙特阿拉伯和科威特的空军基地清理地雷及未爆炸的。美国空军还派出5台Andros机器人前往科索沃,用于爆炸物及子炮弹的清理。空军每个现役排爆小队及航空救援中心都装备有一台Andros VI。

我国研制的排爆机器人

排爆机器人不仅可以排除,利用它的侦察传感器还可监视犯罪分子的活动。监视人员可以在远处对犯罪分子昼夜进行观察,监听他们的谈话,不必暴露自己就可对情况了如指掌。

1993年初,在美国发生了韦科庄园教案,为了弄清教徒们的活动,联邦调查局使用了两种机器人。一种是Remotec公司的AndrosVA型和Andros MarkVIA型机器人,另一种是RST公司研制的STV机器人。STV是一辆6轮遥控车,用无线电及光缆通信。车上有一个可升高到4.5米的支架 ,上面装有彩色立体摄像机、昼用瞄准具、微光夜视瞄具、双耳音频探测器、化学探测器、卫星定位系统、目标跟踪用的前视红外传感器等。该车仅需一名操作人员,遥控距离达10公里。在这次行动出动了3台STV,操作人员遥控机器人行驶到距庄园548米的地方停下来,升起车上的支架,利用摄像机和红外探测器向窗内窥探,联邦调查局的官员们围着荧光屏观察传感器发回的图像,可以把屋里的活动看得一清二楚。

机器人指挥

其实并不是人们不想给机器人一个完整的定义,自机器人诞生之日起人们就不断地尝试着说明到底什么是机器人。但随着机器人技术的飞速发展和信息时代的到来,机器人所涵盖的内容越来越丰富,机器人的定义也不断充实和创新。

1886年法国作家利尔亚当在他的《未来夏娃》中将外表像人的机器起名为“安德罗丁”(android),它由4部分组成:

1,生命系统(平衡、步行、发声、身体摆动、感觉、表情、调节运动等);

2,造型解质(关节能自由运动的金属覆盖体,一种盔甲);

3,人造肌肉(在上述盔甲上有肉体、静脉、性别等身体的各种形态);

4,人造皮肤(含有肤色、机理、轮廓、头发、视觉、牙齿、手爪等)。

1920年捷克作家卡雷尔·卡佩克发表了科幻剧本《罗萨姆的万能机器人》。在剧本中,卡佩克把捷克语“Robota”写成了“Robot”,“Robota”是奴隶的意思。该剧预告了机器人的发展对人类社会的悲剧性影响,引起了大家的广泛关注,被当成了机器人一词的起源。在该剧中,机器人按照其主人的命令默默地工作,没有感觉和感情,以呆板的方式从事繁重的劳动。后来,罗萨姆公司取得了成功,使机器人具有了感情,导致机器人的应用部门迅速增加。在工厂和家务劳动中,机器人成了必不可少的成员。机器人发觉人类十分自私和不公正,终于造反了,机器人的体能和智能都非常优异,因此消灭了人类。

但是机器人不知道如何制造它们自己,认为它们自己很快就会灭绝,所以它们开始寻找人类的幸存者,但没有结果。最后,一对感知能力优于其它机器人的男女机器人相爱了。这时机器人进化为人类,世界又起死回生了。

卡佩克提出的是机器人的安全、感知和自我繁殖问题。科学技术的进步很可能引发人类不希望出现的问题。虽然科幻世界只是一种想象,但人类社会将可能面临这种现实。

为了防止机器人伤害人类,科幻作家阿西莫夫于1940年提出了“机器人三原则”:

1,机器人不应伤害人类;

2,机器人应遵守人类的命令,与第一条违背的命令除外;

3,机器人应能保护自己,与第一条相抵触者除外。

这是给机器人赋予的性纲领。机器人学术界一直将这三原则作为机器人开发的准则。

在1967年日本召开的第一届机器人学术会议上,就提出了两个有代表性的定义。一是森政弘与合田周平提出的:“机器人是一种具有移动性、个体性、智能性、通用性、半机械半人性、自动性、奴隶性等7个特征的柔性机器”。从这一定义出发,森政弘又提出了用自动性、智能性、个体性、半机械半人性、作业性、通用性、信息性、柔性、有限性、移动性等10个特性来表示机器人的形象。另一个是加藤一郎提出的具有如下3个条件的机器称为机器人:

1,具有脑、手、脚等三要素的个体;

2,具有非接触传感器(用眼、耳接受远方信息)和接触传感器;

3,具有平衡觉和固有觉的传感器。

礼仪机器人

该定义强调了机器人应当仿人的含义,即它靠手进行作业,靠脚实现移动,由脑来完成统一指挥的作用。非接触传感器和接触传感器相当于人的五官,使机器人能够识别外界环境,而平衡觉和固有觉则是机器人感知本身状态所不可缺少的传感器。这里描述的不是工业机器人而是自主机器人。

机器人的定义是多种多样的,其原因是它具有一定的模糊性。动物一般具有上述这些要素,所以在把机器人理解为仿人机器的同时,也可以广义地把机器人理解为仿动物的机器。

1988年法国的埃斯皮奥将机器人定义为:“机器人学是指设计能根据传感器信息实现预先规划好的作业系统,并以此系统的使用方法作为研究对象”。

1987年国际标准化组织对工业机器人进行了定义:“工业机器人是一种具有自动控制的操作和移动功能,能完成各种作业的可编程操作机。”

我国科学家对机器人的定义是:“机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器”。在研究和开发未知及不确定环境下作业的机器人的过程中,人们逐步认识到机器人技术的本质是感知、决策、行动和交互技术的结合。随着人们对机器人技术智能化本质认识的加深,机器人技术开始源源不断地向人类活动的各个领域渗透。结合这些领域的应用特点,人们发展了各式各样的具有感知、决策、行动和交互能力的特种机器人和各种智能机器,如移动机器人、微机器人、水下机器人、医疗机器人、器人、空中空间机器人、机器人等。对不同任务和特殊环境的适应性,也是机器人与一般自动化装备的重要区别。这些机器人从外观上已远远脱离了最初仿人型机器人和工业机器人所具有的形状,更加符合各种不同应用领域的特殊要求,其功能和智能程度也大大增强,从而为机器人技术开辟出更加广阔的发展空间。

中国工程院院长宋健指出:“机器人学的进步和应用是20世纪自动控制最有说服力的成就,是当代最高意义上的自动化”。机器人技术综合了多学科的发展成果,代表了高技术的发展前沿,它在人类生活应用领域的不断扩大正引起国际上重新认识机器人技术的作用和影响。

我国的机器人专家从应用环境出发,将机器人分为两大类,即工业机器人和特种机器人。所谓工业机器人就是面向工业领域的多关节机械手或多自由度机器人。而特种机器人则是除工业机器人之外的、用于非制造业并服务于人类的各种先进机器人,包括:服务机器人、水下机器人、机器人、器人、农业机器人、机器人化机器等。在特种机器人中,有些分支发展很快,有独立成体系的趋势,如服务机器人、水下机器人、器人、微操作机器人等。目前,国际上的机器人学者,从应用环境出发将机器人也分为两类:制造环境下的工业机器人和非制造环境下的服务与仿人型机器人,这和我国的分类是一致的。

古代机器人

机器人一词的出现和世界上第一台工业机器人的问世都是近几十年的事。然而人们对机器人的幻想与追求却已有3000多年的历史。人类希望制造一种像人一样的机器,以便代替人类完成各种工作。

气相色谱仪的使用步骤

天气预报的定义

那么,什么叫天气预报呢?天气预报就是应用大气变化的规律,根据当前及近期的天气形势,对未来一定时期内的天气状况进行预测。它是根据对卫星云图和天气图的分析,结合有关气象资料、地形和季节特点、群众经验等综合研究后作出的。如我国中央气象台的卫星云图,就是我国制造的“风云一号”气象卫星摄取的。利用卫星云图照片进行分析,能提高天气预报的准确率。天气预报就时效的长短通常分为三种:短期天气预报(2~3天)、中期天气预报(4~9天),长期天气预报(10~15天以上)。中央电视台每天播放的主要是短期天气预报。

天气预报的主要内容是一个地区或城市未来一段时期内的阴晴雨雪、最高最低气温、风向和风力及特殊的灾害性天气。就我国而言,气象台准确预报寒潮、台风、暴雨等自然灾害出现的位置和强度,就可以直接为工农业生产和群众生活服务。随着生产力的发展和科学技术的进步,人类活动范围空前扩大,对大自然的影响也越来越大,因而天气预报就成为现代社会不可缺少的重要信息。

根据气象观测资料,应用天气学、动力气象学、统计学的原理和方法,对某区域或某地点未来一定时段的天气状况作出定性或定量的预测。它是大气科学研究的一个重要目标。对人们生活有重要意义。

[编辑本段]

天气预报的发展

天气预报的发展可分为3个阶段:①单站预报。17世纪以前人们通过观测天象、物象的变化,编成天气谚语,据以预测当地未来的天气。17世纪以后,温度表和气压表等气象观测仪器相继出现,地面气象站陆续建立,这时主要根据单站气压、气温、风、云等要素的变化来预报天气。②天气图预报。1851年,英国首先通过电报传送观测资料,绘制成地面天气图,并根据天气图制作天气预报。20世纪20年代开始,气团学说和极锋理论先后被应用在天气预报中。30年代,无线电探空仪的发明、高空天气图的出现、长波理论在天气预报上的广泛应用,使天气演变的分析,从二维发展到了三维。40年代后期,天气雷达的运用,为降水以及台风、暴雨、强风暴等灾害性天气的预报,提供了有效的工具。③数值天气预报。20世纪50年代以来,动力气象学原理、数学物理方法、统计学方法等,广泛应用于天气预报。用高速电子计算机求解简化了的大气流体力学和热力学方程组,可及时作出天气预报。尤其是60年代发射气象卫星以来,卫星的探测资料弥补了海洋、沙漠、极地和高原等地区气象资料不足的缺陷,使天气预报的水平显著提高。

神舟号飞船有什么用啊?

这个网上一搜,一大吧!下面找也找个了,希望有点用处

随着科技的发展,气相色谱仪成为现今主流的检测设备,该文主要介绍了气相色谱仪的相关原理、操作使用流程及其注意事项。文章可为气相色谱仪的使用人员提供相关的理论指导及实践经验。(重点看黑色字体涵盖内容就好)

气液色谱法于1952年第一次被创立,该方法发展至今已广泛应用于石油冶炼行业、化学化工行业、生物制药工业、环境监测等领域。而基于该方法生产的气相色谱仪已成为气相色谱分析的主要工具。但其操作、使用具有一定的规程,操作者必须具备良好的操作技能才能在实践中更好地发挥气相色谱仪的功能。

一、气相色谱仪使用方法、程序

气相色谱仪主要由固定相和流动相组成:固定相和流动相各自有不同的吸附和分配作用;通过两相的相对运动,被检测物质随流动相一起运动,这样物质就在两相间进行反复的分配,从而把不同的组织分离开来。气相色谱仪的使用和操作流程一般包括以下几个程序。

1.加热

不同厂家生产的气相色谱仪给定温度的方式是不相同的。温度给定方式一般可分为:微机设数法、旋钮定位法等。如果用微机设数法给定温度,温度可以直接被指定和设置。如果是用旋钮定位法,其使用则有技巧。用过温定位法,将温控旋钮调至低于操作温度约30℃处,给气相色谱仪升温。

当过温至约为操作温度时,通过观察温度指示灯和加热指示灯,逐渐将温度控制旋钮调至合适位置。如果用分步递进定位法,先将温控旋钮朝升温方向转动一个角度,则仪器开始升温,指示灯亮;当温度达到某一温度基本稳定时,再向相同方向转动旋钮,让仪器温度继续上升;反复按此方法进行温度的递进调节,直至达到所需要的工作温度。

2.调池平衡

调池平衡也就是所谓的调热导电桥平衡,其目的是使仪器的输出较为合适。对于具有池平衡、调零功能和记录功能的仪器,需要讲究一定的调节技巧。

3.点火

对于氢焰气相色谱仪,开机的时候需要点火。或者因为某些原因,火熄灭后也需要重新点火。然而,点不着火的情况我们会经常遇到,所以点火也是需要一定技巧的。通用的点火方法是,先加大氢气的流量,然后再进行点火,之后将仪器缓慢调回到工作状态。

4.气体比例的调节

根据有关资料,对于氢焰气相色谱仪其三气的流量比建议为氮气∶氢气∶空气=1∶1∶10。但由于在实际仪器中,转子流量计一般做不到非常精确的测量,所以,这个标准的气体配比在实际操作中很难达到。实际操作过程中,可以着重考虑检测器灵敏度和分离效果,根据实际情况来调整配比。

5.进样

气相色谱分析中,常用的进样方法是使用注射器或六通阀门进样。影响进样量的因素主要是气化温度、柱容量和仪器的线性响应范围。柱效率主要受进样时间长短的影响。若进样时间过长,会造成色谱区域变宽,从而降低柱效率。因此,对于冲洗法色谱而言,应尽可能的减短进样时间,一般要求不超过1s。

二、气相色谱仪的使用步骤:

1、打开稳压电源。

2、打开氮气阀,打开净化器上的载气开关阀,然后检查是否漏气,保证气密性良好。

3、调节总流量为适当值(根据刻度的流量表测得)。

4、调节分流阀使分流流量为实验所需的流量(用皂膜流量计在气路系统面板上实际测量),柱流量即为总流量减去分流量。

5、打开空气、氢气开关阀,调节空气、氢气流量为适当值。

6、根据实验需要设置柱温、进样口温度和FID检测器温度。

7、打开计算机与工作站。

8、FID检测器温度达到150oC以上,按FIRE键点燃FID检测器火焰。

9、设置FID检测器灵敏度和输出信号衰减。

10、待所设参数达到设置时,即可进样分析。

11、实验完毕后,先关闭氢气与空气,用氮气将色谱柱吹净后关机。

三、气相色谱仪使用注意事项

气相色谱仪在使用过程中一般应着重关注以下几个地方。

1.对气相色谱仪分析室的要求

(1)分析室周围不得有强磁场,易燃及强腐蚀性气体。

(2)室内环境温度应在5~35度范围内,湿度小于等于85%(相对湿度),且室内应保持空气流通。有条件的厂应该安装空调。

(3)基本具备好3000x800x600 (长X宽X高) (mm)的能承受整套仪器,便于操作的工作平台。平台不能紧靠墙,应离墙0.5~1.0米,便于接线及检修用。

(4)为防止电压波动造成检测的干扰应装备单独容量在10KVA左右的动力线路电源。

2.配套气源准备及净化

仪器工作时气体一般由供气钢瓶供应,钢瓶的减压阀要经常检漏,对气体纯度要求较高,纯度应该大于99.99%。对于空气和氢气发生器,需要定期进行放水、更换干燥剂。

(1)气源准备,事先准备好需用气体的高压钢瓶(一般大中城市均可购到),装某一种气体的钢瓶只能装这种气体,每个钢瓶的颜色代表一种气体,不能互换。一般用高纯氮气,高纯氢气,无油空气这三种气体,每种气体应准备两个钢瓶,以调换备用。有的厂使用氮气发生器、氢气发生器和空气压缩机也可,但空压机必须无油。凡钢瓶气压下降到1~2Mpa时,应更换气瓶。一般厂家使用使用以上气体99.99%即可,如气相色谱仪配备电子捕获检测器应使用钢瓶高纯气源,纯度在99.999%以上。

(2)气源净化为了出去各种气体中可能含有的水分,灰分和有机气体成分,在气体进入仪器之前应先经过严格净化处理。现在国内的气体发生器具有较高的发展技术,一般配置5A分子筛或活性炭过滤净化装置,基本可以满足气相色谱仪要求。若使用钢瓶高纯气体,则需要进行净化过滤后使用。对一些高端的色谱仪附有净化器,且内已填有5A分子筛,活性炭,硅胶,基本可满足要求。

3.气相色谱仪成套性检查及安放

仪器开箱后,按资料袋内附件清单,进行逐项清点,并将易损零件的备件予以妥善保存。然后按照仪器的使用说明书上要求,将其放置于工作平台上,并对着接线图和各插头,插座将仪器各部分连接起来,连接色谱工作站。

4.气相色谱仪气路连接和气路气密性检查

对于气相色谱仪气路链接一般由色谱仪生产厂家工程技术人员进行,在无法达到满足的情况下应严格按照使用说明书中要求在专业人员指导下安装连接。

气密性检查是一项十分重要的工作,若气路有漏,不仅直接导致仪器工作不稳定或灵敏度下降,而且还有发生泄漏的危险,特别是氢气更应该加以重视。气相色谱仪气密检查一般是检查载气流路,其重点是管路接头处,对于氢气和空气流路也要做相应的检查。

5.进样口

根据实践经验,大多数仪器在进样50~100次之后隔垫会出现损坏的情况,峰保留时间有时也会变化,甚至出现鬼峰,此时需要对隔垫进行更新。对隔垫的完好情况应定期进行检查,如果发现隔垫出现裂口或者有较多的隔垫碎屑时必须进行更换。同时,要定期清洗进样口内的玻璃衬管。

6.色谱柱

在安装毛细管时,要保证色谱柱的两端切口是平整的。毛细柱在长时间不使用的情况下,在将毛细柱接进入样口和检测器之前应将其两端切掉2cm左右。

7.检测器

未处于工作状态的检测器不应开启,应使其保持关闭状态。对于ECD检测器,其在排放放空气时应设置导管,把空气排出室外。平时使用时也应该注意,不要把空气引入到ECD检测器中。

结语

气相色谱仪作为现代主流的检测设备,其工作原理并不难懂,但设备使用有着严格的操作程序。每个使用环节都一定的要求,从气源、设备到外界环境条件都有特殊要求。只有了解了这些要求才能高效、快捷的使用气相色谱仪。

说到作用,军用吧。任何一个国家都会把自己最新最先进的技术用于军事,美国,俄罗斯,欧盟各国,日本,甚至印度,就连朝鲜都是这样,比如美国吧,用于军事的航天技术最明显的就是间谍卫星,还有NMD也包含了大量的航天技术,所以说我国把自己的航天技术用于军事上无可厚非,当然,美国、日本、分子,邪教分子是不喜欢看到这样的,所以才会找了一堆理由来说三倒四。在说说航天技术对民生的作用,那也是很多,那些什么未来开发太空,以及通讯卫星、气象卫星等这些事情很多朋友都说了,我就不重复了,我在说说我认为的几点。首先,航天科技可以带动一系列相关产业的发展,这次参与神六相关项目的有关科研单位、院校和企业有近一千多家,而通过神六的研制,可以完全的带动起来我国科技水平的提高,锻炼了我国科研人员的水平,让我国的有了众多的拥有自主知识产权的新的科研成果,为我国的可持续发展提供了一个良发的科技水平的基础,同时也给我国的一些相关企业带来可观的经济效益,当年美国搞登月,航天飞机,给美国的科技界带来了相当大的提高,同时也让美国的一大批公司有了经济实惠。其次就是相关的一些科研新成果用于民用项目,正如刚才所说,一批新的,拥有自主知识产权科研成果因为神六的发展而出现,而这些技术有些在现在,有些则在不久的将来,就会用于民用项目,生产出大量的新产品,一方面可以为普通民众所使用,另一方面还可以为相关企业创造出可观的经济效益。当然,这些大部分可能只会在我们日常使用的一些基本用品的内部,甚至只是小小的改进了这些普通的日常用品,不会被大多数人所发现。